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Axisymmetric propagating vortices in
the flow between a stationary and a rotating disk

enclosed by a cylinder
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Laboratoire FAST, Bât. 502, Campus Universitaire, F-91405 Orsay Cedex, France

(Received 9 July 1998 and in revised form 30 October 1998)

The destabilization of the stationary basic flow occurring between two disks enclosed
by a cylinder is studied experimentally when the radius of the disks is large compared
to the spacing. In the explored range of the cell aspect ratio, when one disk only
is rotating, circular vortices propagating to the centre are observed above a critical
angular velocity. These structures occur naturally but can also be forced by small
modulations of the angular velocity of the disk. For each rotation rate the dispersion
relation of the instability is experimentally reconstructed from visualizations and it
is shown that this dispersion relation can be scaled by the boundary layer thickness
measured over the disk at rest. The bifurcation is found to be of supercritical nature.
The effect of the forcing amplitude is in favour of a linear convective nature of this
instability of the non-parallel inward flow existing above the stationary disk. The
most unstable temporal frequency is found to be about four times the frequency
of the rotating disk. The evolution of the threshold of this primary instability is
described for different aspect ratios of the cell. Finally, two sets of experiments made
under transient conditions are presented: one in order to investigate further a possible
convective/absolute transition for the instability, and the other to compare with the
impulsive spin-down-to-rest experiments of Savas (1983).

1. Introduction
There have been many fundamental experimental and theoretical studies of the flow

between rotating disks. Indeed, this is a well-known example of three-dimensional
flows and a model geometry to study the cross-flow instabilities and the turbulence that
occur in turbomachines. Recently, such a geometry has been used at large Reynolds
number to study the statistical properties of turbulence, both numerically by Brachet
(1990) and experimentally by Couder, Douady & Brachet (1991) and Fauve, Laroche
& Castaing (1993). The fundamental work is due to von Kármán (1921) who showed
for one infinite rotating disk that the Navier–Stokes equations can be reduced to a
set of four nonlinear ordinary differential equations by a similarity transformation.
Then Bödewadt (1940) extended von Kármán’s solutions to a rotating fluid over
a stationary disk. The most studied geometry thus corresponds to the flow over a
rotating disk and it has been shown that the boundary layer can be unstable and
undergoes various instability modes. Two of these modes are known as type I (class
B) and type II (class A) spirals and have been studied by Gregory, Stuart & Walker
(1955), Faller (1963), Faller & Kaylor (1966), Itoh (1984), Wilkinson & Malik (1985)
and recently by Jarre, Le Gal & Chauve (1991, 1996a, b). More recently, Lingwood
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has shown both theoretically (Lingwood 1995) and experimentally (Lingwood 1996)
that the flow over a rotating disk is first convectively unstable and afterwards exhibits
a convective/absolute transition which seems to correspond experimentally to the
onset of laminar–turbulent transition.

This single-disk problem has been extended to two infinite disks by Batchelor (1951)
with the same similitude transformation that von Kármán (1921) and Bödewadt (1940)
used. However, two different types of solutions have been found for this problem:
one by Batchelor (1951) with two separated boundary layers close to the disks and
a core rotating as a solid body, and another one by Stewartson (1953) with only
one boundary layer on the rotating disk. A large number of studies, reviewed by
Zandbergen & Dijkstra (1987), have been done to clarify this point. It appears
that, independently of any stability argument, the Batchelor solution exists at low
Reynolds number while the Stewartson one only exists for larger Reynolds number.
Brady & Durlofsky (1987) address numerically the case of finite but large disks. They
introduce an end condition for the flow at the periphery as a matching condition
between inner and outer inviscid regions. For such shrouded disks in the rotor/stator
case, i.e. the one that interests us in the present paper, they found that the flow usually
resembles a Batchelor-type solution even if it does not correspond quantitatively to
a self-similar solution. The flow between two finite disks has been experimentally
studied by Dijkstra & van Heijst (1983) and Sirivat (1991) when one disk is rotating
whereas the second one is fixed. They both found spiral patterns of type I and II,
similar to the ones observed in the flow over a single rotating disk. Theoretical studies
of this flow can be found in San’kov & Smirnov (1991) and also in Hoffman, Busse
& Chen (1998) in a related geometry.

Although the Bödewadt flow has been known since 1940, it has been far less
studied. This is probably due to the experimental difficulties in creating a fluid in
rotation over a stationary disk. Savas (1983, 1987) experimentally and then Lopez
& Weidman (1996) and Lopez (1996) both numerically (with an axisymmetric code)
and experimentally studied the stability of such a flow in a cylinder tank under the
transient condition of an impulsive spin-down-to-rest. They observed first propagating
axisymmetric waves and then spirals over the stationary disk. In the rotor/stator case
and for experimental steady conditions, the existence of axisymmetric structures have
been mentioned in San’kov & Smirnov (1984) and axisymmetric vortices propagating
in the Bödewadt layer have been described by Gauthier, Gondret & Rabaud (1996)
and in Schouveiler et al. (1996, 1999) when the gap between the disks is not too small.
Such structures have been also reported numerically (with an axisymmetric code) but
at much larger angular velocity by Cousin-Rittemard (1996) and Cousin-Rittemard,
Daube & Le Quéré (1998).

The aim of the present study is to characterize the primary instability leading to
propagating axisymmetric waves in the flow between a stationary and a rotating disk
enclosed by a cylinder. Our experimental set-up allows us to perturb the basic flow in
the form of a small periodic modulation or small impulse in the disk velocity. With
this external controlled forcing, we have been able to study carefully the influence of
noise on the onset and to determine if the bifurcation is subcritical or supercritical
and if the instability is convective or absolute. We will see that even though the
cell is closed, the system behaves as a non-parallel open flow. In § 2, we present
the experimental set-up and the visualization technique of the fluid flow seeded with
anisotropic particles. This technique allow us to visualize the boundary layers attached
to each disk and their evolution with both the disk velocity and the radius, and to
determine which boundary layer is destabilized when the disk velocity is increased
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Figure 1. Sketch of the experimental set-up. R = 140 mm and h is adjustable (3 < h < 16 mm).

(§ 3). Section 4 is devoted to a general description of the structures observed when no
forcing is added. In § 5, we present extensive measurements of the instability obtained
with a periodic forcing of the disk velocity, from which, in particular, the dispersion
relation is obtained. Finally in § 6 we present some additional transient experiments
where the flow response to a small impulse or step and also to spin-down to rest is
investigated.

2. Experimental set-up
A section of the cell is presented in figure 1. It consists of a cylinder of small

height h closed by a top disk and a bottom disk, both of radius R = 140 mm. The
upper disk is made of glass and is rotating together with the cylindrical sidewall
which is made of PVC. The bottom disk is made of rectified brass, coated by a black
anodization to improve the visualization contrast. To allow differential rotation the
radius of the bottom disk is slightly smaller (a tenth of a millimetre) than the radius
of the shrouding cylinder. The thickness h can be adjusted in the range 3 mm to
16 mm by a vertical translation of the top part. Great attention has been paid to the
disk parallelism using a set of external wedges. In situ measurements show that the
thickness h is constant within ±0.07 mm when the top disk is rotating. As we usually
work with h larger than 6 mm, the relative thickness variations are smaller than 1%.

The upper and lateral walls rotate together and the bottom disk can also rotate
independently. Each rotation is controlled by a DC motor with a tachometric genera-
tor and a regulation loop. After two speed reducers, angular velocity Ω0 ranging from
0 to 10 rad s−1 with a resolution of 10−4 rad s−1 can be achieved. We have measured
the r.m.s. noise intensity in the tachometric signal and found it very low (less than
10−4 rad s−1). The rotation is transmitted to each disk by a belt. When a periodic
forcing of the instability is used, a small modulation is added to the command signal.
The angular velocity is Ω(t) = Ω0 + ∆Ω cosωt, with a modulating frequency in the
range 10 < ω < 30 rad s−1. The results presented in this paper correspond to the bot-
tom disk at rest and a rotating top disk; however, the same structures and dynamics
are observed in the reverse case despite the fact that our set-up is not completely
up/down symmetrical as the cylindrical side wall is attached to the upper disk.

The cell is completely filled with a mixture of glycerol, water and a suspension of
anisotropic flakes (by volume 21% of glycerol, 76% of water and 3% of Kalliro-
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scope †) so that the viscosity is ν = 2.0 × 10−6 m2 s
−1

at 20 ◦C. We observe the light
reflected by the flakes. As we will see in the figures, the spatial variation of the
reflected light gives easily information such as the wavelength or the phase velocity
of the structures. In a previous study (Gauthier, Gondret & Rabaud 1998), we have
shown that, in three-dimensional flows, this light intensity is not generally due to par-
ticles having some static orientation but to particles rotating in a plane that depends
on the local velocity gradient tensor of the flow. Quantitative information about the
velocity field is not straightforward to extract from the visualization; however, in the
particular case of the rotating disk flow, we have shown that the thickness of the
boundary layers is proportional to the distance of an observed bright line from a disk.
Furthermore, it has been shown that the co- or contra-rotative nature of vortices can
be inferred from observation on both sides of a laser sheet as two vortices of opposite
sign do not reflect the same light in the same direction. The global or maximum
light intensity was shown to be proportional to the particle concentration as long as
interactions between the flakes can be neglected; however, the contrast of the images
decreases in a few days. The proportionality between the light intensity of bifurcated
patterns and the perturbed velocity field remains to be demonstrated, but in the
following, we will assume as usual a linear relation for a quantitative study of the
instability.

Two visualization techniques allowed us to explore the flow structure. In the first
axisymmetric one, the light source is a 40 W circular fluorescent lamp of radius larger
than the disks, concentric to the cell and located a few tenths of a centimetre above. A
CCD camera is placed on the axis of symmetry about one metre above the set-up in
order to observe the entire cell through the upper glass disk. In the second technique,
the light source consists of a laser sheet created by an helium-neon laser diode and a
cylindrical lens. Usually, the sheet is located in a plane containing the radial and axial
directions. In this case another camera with a macro lens is located close to the upper
disk and oriented parallel to the bisector between the axial direction and the normal
to the laser sheet. The images are digitized on 8 bits and processed with the freeware
NIH Image ‡. More details about the set-up can be found in Gauthier (1998).

To get dimensionless numbers to characterize the transitions, one has to choose
among several possibilities of scaling since R, h, ν and Ω0 are relevant parameters,
and all the possible Reynolds numbers are encountered in the literature. Since the
work of Ekman (1905) the boundary layer between a fluid and a plane rotating at
Ω0 is known to scale as δ0 = (ν/Ω0)

1/2. This is the only length that exists over a
single infinite disk. In such a case, the usual dimensionless number is a local Reynolds
number defined as the ratio of the local radius r to the thickness δ0 (Lingwood 1996).
In our closed geometry we choose to use the same Reynolds number as Dijkstra
& van Heijst (1983) based on the thickness of the cell: Re = Ω0h

2/ν. The second
dimensionless number is the aspect ratio of the cell Γ = R/h. All the results of this
paper correspond to h = 6.7 mm, thus to Γ = 20.9, except in §5.6 where 10 < Γ < 40.

3. Boundary layer localization and evolution
In a two-disk flow configuration, two boundary layers can develop close to the

disks according to Batchelor’s solution. By analogy to the case of a single disk,
the boundary layer close to the rotating disk is usually called the Ekman layer,

† Kalliroscope Corporation, 264 Main Street, box 60, Groton, MA 01450, USA.
‡ Internet address : http://rsb.infi.nih.gov/NIH-IMAGE/
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Figure 2. Radial laser sheet visualizations for increasing Reynolds number: (a) Re = 44.9;
(b) Re = 61.6; (c) Re = 91.6; (d) Re = 145.4. The image (d) is obtained above the threshold
of circle appearance but no circle can be seen as it has been time averaged. The two horizontal
bright strips in (b), (c) and (d) correspond to the limits of the Ekman (upper) and Bödewadt (lower)
boundary layers. In (a), these two boundary layers are not yet separated. The two vertical black
lines were drawn for measuring purpose and are separated by 13 mm.

whereas the one close to the stationary disk is called the Bödewadt layer. We have
determined and measured the thickness of the two boundary layers in our set-up
by means of laser sheet visualization. In figure 2 four visualizations of the radial
laser sheet perpendicular to the disks are presented for increasing Reynolds number.
Above Re = 52, two separate thin bright strips related to the two boundary layers
are observed. These strips move closer to the disks when the rotation rate increases.
At the onset of the instability we observe that the bright line corresponding to the
Bödewadt layer undergoes a wavy motion which corresponds to the appearance of
circular waves. Following the description of the reflected intensity versus the velocity
field for the two-disk flow (Gauthier et al. 1998), such visualizations allow us to
measure the thickness of the two boundary layers as the distance of these bright lines
to the closer disk. To do that, we extract the local extremum of the light intensity at
each vertical line of figure 2. The measurements as a function of the radial location
and for different Reynolds numbers are reported in figure 3(a). Note that no data are
obtained near the centre (r/R < 0.3), either because our visualization technique is not
sensitive enough or because the boundary layers do not exist there, and close to the
periphery (r/R > 0.8) owing to the size of the camera. As expected, one clearly sees
that the thicknesses δEk and δBo of both layers decrease when the Reynolds number is
increased. For a given rotation rate, the Ekman layer remains constant over the radius
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Figure 3. (a) Position z of the Ekman and Bödewadt boundary layers as a function of the radial
position r measured at different Reynolds numbers: Re = 73.3 (�), 84.7 (5), 103 (4), 107.6 (�)
and 130 (◦). (b) Normalized thicknesses δBo/δ0 and δEk/δ0 of the boundary layers for the same
values of Re and a linear fit through the data (—).

whereas the Bödewadt layer increases regularly from the periphery to the centre. By
scaling the measurements with the appropriate length δ0 = (ν/Ω0)

1/2, the points
collapse onto two curves (figure 3b): one of constant value (δEk/δ0 ≈ 2.2) and the
other depending on the radius (δBo/δ0). A linear fit gives δBo/δ0 = 6.9−5.3(r/R) as the
leading-order dependence of the Bödewadt layer on the radius in the middle region
of the cell. The Bödewadt layer being larger close to the centre than at the periphery,
this suggests that the velocity profiles evolve continuously from a Stewartson one for
small r (i.e. only one boundary layer on the rotating disk) to a Batchelor one with
a bulk solid rotation for larger r. However, in situ measurements will be necessary
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Figure 4. Top view image of: (a) isotropic reflected light Re = 40; (b) circles propagating from the
periphery to the centre at Re = 120; (c) spirals (with 31 arms) at the periphery and propagating
circles closer to the centre at Re = 180; (d) disordered state at Re = 300. The upper disk is rotating
anti-clockwise.

to confirm that point. The rather good collapse of the data observed in figure 3(b)
shows that δ0 is the fundamental length scale for the flow but the radial position
is also important to describe δBo . This radial dependence of the Bödewadt layer is
clearly related to the closed geometry, as such dependence is not predicted in the
one-disk case (Bödewadt 1940) or in the case of two infinite disks (Batchelor 1951).
This radial dependence of the Bödewadt layer has not been clearly mentioned in
the literature but can be seen in recent numerical simulations (see figures 5 and 9
of Randriamampianina et al. 1997; figure 2 of Lopez 1996 and figure 3d of Lopez
1998). This evolution of the flow in the Bödewadt layer suggests that, even if the
cell is closed, the flow can have some properties in common with other non-parallel
open flows. Indeed, the Bödewadt layer is unstable at larger Reynolds number and
structures appear, grow and then decay when advected radially inward in this layer.
There is no feedback mechanism induced by the closing of the radial circulation in
the outward flow of the Ekman layer, as this layer is stable in the present study. An
interpretation in terms of an unstable non-parallel open flow can thus be used and
its convective or absolute nature has then to be investigated (Huerre & Monkewitz
1990).

4. Description of the structures observed without forcing
We will now present the patterns observed naturally, i.e. without any added forcing,

when increasing the disk velocity and for the aspect ratio Γ = 20.9. At low rotation
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Figure 5. Radial laser sheet perpendicular to the disks showing propagating circles at Re = 120.
The image shows all the height h of the cavity (h = 6.7 mm) but only a part of its radial extent
(18.7 mm width). Note that the horizontal and vertical scales are not equal. The axis of rotation
is located to the left and the top disk is rotating anti-clockwise. Propagating torii appear here as
the two bright elongated patches at one third of the height above the bottom disk at rest. These
patches propagate to the centre, thus here to the left.

velocities, our visualization from above shows an almost uniform reflected light inten-
sity over the disk (figure 4a), in accordance with an axisymmetric and stationary basic
flow. Above a critical rotation rate, propagating circular structures corresponding to
a spatiotemporal modulation of the reflected light intensity are observed (figure 4b).
These circular waves, which we will call circles, appear close to the periphery, prop-
agate toward the centre and disappear at a given radius. Note that the threshold for
the circle appearance depends on the noise level. With previous less regulated motors,
the threshold was found to be Re ≈ 70 while with the motors now used this threshold
is found to be Re ≈ 110. On increasing the angular velocity, the circles are more
distinct and propagate farther toward the centre. At even higher angular velocities,
spirals appear at the periphery and circles are then only observed closer to the centre
(figure 4c). Note that now the onset of the appearance of the spirals does not appear
to be sensitive to the noise level. Increasing the angular velocity still further, the
spirals progressively invade the cell, and then a disordered pattern corresponding to
the onset of turbulence is observed at the centre (figure 4d). The circles are thus
observed only in a small range of the control parameter. The spirals exhibit typically
30 arms and roll up in the direction of Ω0 (figure 4c), thus corresponding to type II
spirals (Sirivat 1991; Schouveiler, Le Gal & Chauve 1998). When using the laser sheet
visualization (figure 5), the circular vortices appear as bright patches propagating
above the bottom stationary disk. The centres of these patches propagate toward the
axis along a trajectory that coincides with the previously observed bright line corre-
sponding to the limit of the Bödewadt layer. Above these patches, we can see a bright
thick line corresponding to the still stable Ekman layer. From an observation of the
other side of the laser sheet and following the analysis of Gauthier et al. (1998), we
can conclude that these propagating vortices are co-rotating. The typical wavelength
of the circular waves is λ ≈ 15 mm. As the gap thickness is smaller (h = 6.7 mm),
the vortices have an elongated section. Figure 6 shows a spatiotemporal image of the
propagating circular waves at Re = 128. This image is built by plotting at successive
times a radial video line taken from above. In this figure, the structures can be seen
propagating between r ≈ 120 mm and r ≈ 60 mm as a succession of bright and dark
lines. Even though the pattern is not perfectly regular, we do not see any dislocation:
contrary to Cousin-Rittemard et al. (1998) and Schouveiler et al. (1999), we do not
observe any pairing of circular waves during their radial propagation. From the cur-
vature of these lines, one can deduce that the phase velocity of the waves decreases
during their motion to the centre.

In summary, only circles can be observed for 70 < Re < 140, and together with
spirals for 140 < Re < 200. Turbulence appears progressively at the centre with
spirals at the periphery when Re > 200. In the rest of the paper, we will focus on the
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Figure 6. Spatiotemporal image of propagating circles observed without forcing at Re = 128. This
picture is constructed by plotting at successive times (∆t ≈ 1/17 s) a single video line of a picture
taken from above (radial line of images like the one of figure 4b). The time t is normalized by the
period of rotation of the disk T0 = 2π/Ω0.

circular waves and, as we have seen that their appearance seems to depend strongly on
the noise level, we will study the flow response to some external controlled excitation.

5. Flow response to a periodic forcing
In order to characterize quantitatively the circular waves, we impose an external

forcing by modulating the angular velocity Ω0 of the rotating disk. The angular
velocity is now Ω(t) = Ω0 + ∆Ω cosωt. This forcing is applied to all the disk and so is
non-local. Most of the results presented hereafter will correspond to Ω0 = 5.25 rad s−1

and Γ = 20.9 (Re = 120), and to a modulation of amplitude ∆Ω/Ω0 = 6.5%. Similar
results are found if the modulation is imposed on the stationary disk.

5.1. Spatial amplitude of the reflected light

Figure 7(a) shows a spatiotemporal image of the propagating circular waves when
excited. Figure 7(b) corresponds to a time filtering of figure 7(a) consisting of a narrow
band-pass filter centred on the forcing frequency. The narrow filtering is justified here
when one looks at the temporal power spectrum density (PSD) of the light intensity
signal at one point (figure 8). The peak ω corresponding to the circles is sharp and
by far the strongest compared to the other peaks, which correspond mainly to the
rotation frequency Ω0 and its harmonics. Note that these frequencies may appear
either because the set-up is not perfect and triggers some perturbations in the flow,
or because the optical transmission through the upper glass disk is non-constant
around the perimeter. Since the time frequency at each radial position remains equal
to the forcing frequency ω and as the bright lines in the spatiotemporal images of
figure 7 are curved showing that the phase velocity decreases toward the centre, one
can deduce that the wavenumber increases continuously toward the centre.

The intensity I(r, t) along each radial video line (any vertical lines of figure 7)
is I(r, t) = I0(r) cos (

∫
kr(r) dr − ωt), where kr(r) is the local wavenumber and I0(r)

the amplitude of the light modulation. The local amplitude I0(r) increases and then
decreases from the periphery toward the centre, with a maximum Imax at a given



114 G. Gauthier, P. Gondret and M. Rabaud

0 2 4 6 8 10 12

0

20

40

60

80

100

120

r 
(m

m
)

t /T0

(b)

0 2 4 6 8 10 12

0

20

40

60

80

100

120

r 
(m

m
)

(a)

Figure 7. Non-filtered (a) and filtered (b) spatiotemporal image of propagating circles observed at
Re = 120 and with a periodic forcing corresponding to ω = 18.84 rad s−1 and ∆Ω/Ω0 = 6.5 %.
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Figure 8. Power spectrum density (PSD) of the non-filtered time signal of the light intensity
at one point (r = 114 mm in figure 7a): Ω0 = 5.25 rad s−1 (Re = 120), ∆Ω/Ω0 = 6.5% and
ω = 18.84 rad s−1. The frequency of rotation and its harmonics are visible but one order of
magnitude less than the response to the forcing at ω.
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Figure 9. Light intensity I0 as a function of the radial position r at Re = 120 and for different
forcing frequency: ω = 10 (- - -), 17.6 (—) and 30.2 rad s−1 (— - —).
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Figure 10. (a) Evolution of rmax as a function of the forcing angular frequency ω at Re = 120
(Ω0 = 5.25 rad s−1). (b) Maximum light intensity Imax versus ω: experimental data (�) and best fit
by a Gaussian curve (—) of resonance frequency 20 rad s−1 and standard deviation 11 rad s−1.

radius rmax (figure 9). The radius rmax increases almost linearly when the forcing
frequency increases (figure 10a) whereas Imax exhibits the shape of a resonance curve
(figure 10b). This resonance curve being wide (the factor of quality is of order one),
the flow is a rather large-band amplifier, with a most amplified frequency which is
around four times the disk frequency Ω0. Note that such a spatial variation of the
amplitude of the waves of figure 9 (initial growth followed by decay) is classical for
an unstable non-parallel flow.

5.2. Local wavenumber and spatial growth rate of the circular waves

In our closed cell there is a general circulation (outward in the Ekman layer and
inward in the Bödewadt one) and the instability appears only in part of the Bödewadt
layer. As this layer is of increasing thickness, the flow is a spatially developing one.
Thus the instability behaves like one of an open flow and we will now use a
spatial description (Huerre & Monkewitz 1990). In spatial normal mode analysis,
the permanent perturbed velocity field is proportional to exp [i(

∫
k dr − ωt)] with

real constant ω and complex wavenumber k = kr + iki. The real part kr is the local
wavenumber of the pattern and ki is the spatial growth rate in the propagating
direction (inward).

The local wavenumber kr(r) is extracted from the light intensity along a radial line
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Figure 11. Wavenumber kr as a function of the radial position r at Re = 120 and ω = 18.8 rad s−1

measured at the different times of figure 7. The continuous line kr = 1.59 − 0.01r is a linear fit
through the data. The dispersion of the data is due to a very low signal for large or small r.

(e.g. any vertical line of figure 7b) through a demodulation process using a Hilbert
transformation (Croquette & Williams 1989). Figure 11 represents the wavenumber
kr as a function of the radius r for one forcing frequency ω and shows that, when
the structures are clearly observed, kr increases almost linearly when r decreases. The
same data are extracted for various forcing frequencies and the dispersion relation
(kr(r), ω) at different selected radial positions is plotted in figure 12(a). The curves
corresponding to different radial positions are roughly linear and with a constant slope
∂ω/∂kr ∼ 30 mm s−1 whatever the radius. The phase velocity vφ = ω/kr increases
weakly with ω for small r but decreases more significantly with ω for large r, being
nearly constant for r = 80 mm.

The local spatial growth rate ki(r) is also extracted from the light intensity curves
I0(r) of figure 9 using a WKBJ approximation (Hinch 1991), i.e. assuming locally
an exponential growth of the light intensity: dI0/dr = −ki(r)I0. Such a WKBJ
approximation requires a weakly non-parallel flow, i.e. in our case that the spatial
evolution of the boundary layer is small on the scale of a wavelength. Figure 3 shows
that for λ ≈ 15 mm, the relative evolution of the Bödewadt layer is less than 10%. As
the waves propagate from the periphery to the centre they are first amplified (ki(r) > 0
for r > rmax) then marginal (ki(r) = 0 for r = rmax) and finally damped (ki(r) < 0
for r < rmax). Figure 12(b) shows the evolution of ki(r) versus ω for different radial
positions. Such a figure only shows that, at each frequency, the spatial growth rate
is either negative or positive depending on the radius. The representation (ki(r), kr(r))
of figure 13(a) seems to be a better one. Despite some scattering in the data, the
growth rate is positive for a band of unstable wavenumbers, roughly between 0.1 and
0.6 mm−1, and negative for higher stable wavenumbers. The scattering of the data can
be strongly reduced when using kr(r) and ki(r) multiplied by the thickness δBo(r) of the
Bödewadt layer which is the physical length of the flow at radius r (figure 13b). Note
that with a local analysis using the local Reynolds number defined as the ratio r/δ0

or r/δBo , the data do not collapse so clearly on a single curve. Figure 13(b) shows that
the locally most unstable wavenumber is krmax ≈ 0.5/δBo whatever the position and
the forcing frequency. The marginal wavenumber which corresponds to the brightest
circles is of the order of 1.5/δBo , thus three times larger than the most unstable one.
Note that our experimental value of krmax is similar to the one found theoretically by
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Figure 12. (a) Local wavenumber kr as a function of the forcing frequency ω at Re = 120 for five
different radial positions: r = 34 (�), 57 (◦), 80 (�), 102 (4) and 114 mm (5). (b) Spatial growth
rate ki versus ω for fifty different radial positions (34 < r < 128 mm).

Lingwood (1997) (krmax ≈ 0.33/δ0) at the convective/absolute transition in the case of
propagating circular waves in the Bödewadt flow above a single infinite disk.

5.3. Influence of the Reynolds number

All the results presented above were obtained for a given angular velocity Ω0 and a
gap spacing h, hence for a given Reynolds number Re. We will now investigate the
effects of changing the Reynolds number by changing Ω0. Figure 14(a) shows the
evolution of the maximum dimensionless growth rate kimaxδBo as a function of the
Reynolds number. For a supercritical instability the growth rate is known to increase
linearly above threshold. A linear fit through our data gives a rough estimation
for the threshold Rec of the instability: Rec = 65 ± 10. Note that whatever the
Reynolds number, we find that the most unstable wavenumber always corresponds
to krmax ≈ 0.5/δBo , suggesting that the critical wavenumber at Rec is non-zero and
equal to this value. Similarly, we plot the square of the width of the range of unstable
wavenumbers [∆(krδBo)]2 versus Re (figure 14b). Again, a linear fit suggested by a
supercritical bifurcation gives a critical Reynolds number Rec ≈ 82 ± 8. This fit
through the data allows us to determine the curvature of the marginal stability curve
which is the coefficient ξ0 of the diffusive term in an underlying Ginzburg–Landau
equation (Jarre et al. 1996b). We find that ξ0/δBo ≈ 8.
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5.4. Influence of the noise level

To determine a possible effect of the noise level on the apparent threshold of the
instability, we have tested various forcing amplitudes. In figure 15(a) the maximum
observed light intensity Imax of the circular structures is plotted versus Re for four
different forcing amplitudes ∆Ω but at a given forcing frequency ω. The light intensity
Imax exhibits a sharp increase when Re increases. Furthermore at a given Re, Imax
appears to increase with the forcing amplitude ∆Ω. To test the linear dependence of
Imax upon ∆Ω, we plot the ratio Imax/∆Ω versus Re in figure 15(b). The collapse of
the data on a single curve for Re < 110 shows that the response Imax doubles when
doubling ∆Ω. This result demonstrates that, even at large forcing amplitude, we are
still in the linear regime of a supercritical instability. From this figure the threshold of
the instability, determined as the inflection point of the curve, appears to be around
Re ≈ 70± 5.

It is worth recalling that without controlled forcing we do not observe any structures
until Re > 110. We believe that this result is not in contradiction with a supercritical
instability. Indeed the forcing imposed in figure 15 corresponds for e.g. Ω0 = 3 rad s−1

(Re = 67) to ∆Ω/Ω0 = 0.16, 0.11, 0.04 and 0.004. When no forcing is added, the
natural mechanical noise corresponds to ∆Ω/Ω0 = 4 × 10−5, as estimated from the
r.m.s. signal given by the tachometric generator of the motor in the frequency range
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[Ω0,10Ω0]. As the amplitude of this natural noise is 1/100 of the amplitude of the
smallest forcing, the light modulation, being proportional, should be 100 times smaller
when Re < 110, and as shown by figure 15(a), could not be visualized. It is only at
larger Re (Re > 110) that the amplitude is large enough that the instability is visually
detected. This strong influence of the noise level explains why, as already mentioned
in § 2, we found visually Rec ≈ 70 without adding any forcing to a less well-regulated
previous motor. The behaviour of the light intensity above Re = 110 (figure 15) will
be discussed in § 6.1.

5.5. Discussion of the most unstable frequency

We have already seen in figure 10(b) that the instability is a large-band noise amplifier
with a most amplified frequency around four times the angular frequency of the
rotating disk. Such behaviour is confirmed when adding a white noise to the angular
rotation of the disk: the light intensity spectrum presents a large peak around 4Ω0 with
a standard deviation similar to the one of figure 10(b). When no external controlled
forcing is added, the circular waves are observed under steady conditions at larger
Re (Re > 110) but in that case with a frequency exactly equal to 4Ω0 (figure 16). This
may be due to the selective amplification by the bell shaped curve of figure 10(b) of
the harmonics of Ω0 observed in the signal of the motor. In figure 17, we compare
the most unstable frequency ωmax observed with and without forcing for various Re.
With forcing, the ratio ωmax/Ω0 evolves slightly with Re around the value 4 but is
clearly locked to 4 without forcing. In their experimental study, Schouveiler et al.
(1999) found without controlled forcing a natural frequency of circles that evolves
discontinuously along the radius from 3Ω0 at the periphery, through 2Ω0 and finally
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(Ω0 = 5.42 rad s−1) without external controlled forcing.

Ω0 toward the centre, these changes of frequency being due to pairing of vortices.
Similar pairing from 3Ω0 to Ω0 has been observed numerically for larger aspect
ratio by Cousin-Rittemard (1996). In the present study, we did not observe such
pairing of the structures, neither with nor without forcing. Note that in the case of a
fluid rotating at Ω over a single stationary and infinite disk, Lingwood (1997) found
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theoretically ω/Ω ≈ 1.3 at the convective/absolute transition for the axisymmetric
structures in the Bödewadt layer.

5.6. Aspect ratio dependence of the threshold

By varying the height of the cell, we have also studied the influence of the aspect
ratio on the threshold of the instability in the presence of noise. The determination
of Rec was here only visual, but this gives a good estimate in agreement with all the
determinations presented above. The critical Reynolds number Rec is plotted versus
the inverse of the aspect ratio 1/Γ = h/R in figure 18. The threshold decreases almost
linearly when h decreases and we do not observe any asymptotic value of Rec for
small h. This shows that, at least for Γ < 40, the threshold of the instability is still
dependent on the aspect ratio and thus that the basic profile is still evolving. Thus
the flow does not reach an asymptotic regime such as the one described by Brady &
Durlofsky (1987). Whatever the choice for the definition of the Reynolds number, the
onset depends both on Re and on the aspect ratio Γ and thus cannot be described
by a single parameter. Our results are in fair agreement with those recently found
by Schouveiler (1998) in a similar cell although he had no controlled forcing in his
system. However, he did not observe any circles for Γ > 20. The numerical results
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of Cousin-Rittemard et al. (1998) also show a similar dependence of the critical
Reynolds number on the aspect ratio but their values of Rec are much larger than
the experimental ones (e.g. Rec = 900 instead of 180 for Γ = 10, which is the largest
aspect ratio tested numerically but the smallest one tested experimentally).

6. Flow response to transients
With a periodic forcing of the rotating disk, we have determined the threshold of

the instability and its characteristics. We now report the results of some additional
experiments where we investigate the flow response to transients in the disk velocity.
First, the response to a small impulse or step allows us to test the convective
or absolute nature of the instability. Secondly, we have done spin-down to rest
experiments in order to compare our results with those of Savas (1983, 1987) and
Lopez & Weidman (1996), and thus to determine if the circular waves we observed
under steady conditions are of the same kind than those observed in the spin-down
experiments.

6.1. Response to a small impulse: test of a convective or absolute regime

By studying the response of the flow over a single rotating disk to a local perturba-
tion,Wilkinson & Malik (1985) and more recently Lingwood (1996) have demonstrated
experimentally the convective nature of the spirals observed in the Ekman layer. In
addition, Lingwood (1996) clearly demonstrated a convective/absolute transition for
a higher local Reynolds number. For the rotating flow over an infinite stationary disk,
Lingwood (1997) found theoretically the existence of a convective/absolute transition
for spirals as well as for axisymmetric waves. For the rotor/stator case, the convec-
tive behaviour of the circular waves in the Bödewadt layer has also been observed
numerically with steps in the angular velocity by Cousin-Rittemard et al. (1998) for
Re = 2000 and Γ = 6 and by Lopez (1996) for Re = 10000 and Γ = 1. We have
also performed similar experiments briefly perturbing the flow. When Re < 68 no
structures are observed. For 68 < Re < 110, the perturbation triggers a few circular
waves, and the generated wave packet propagates toward the centre and fades away.
In the wave packet we typically observe two to four waves with a mean frequency
which is again ω/Ω0 ≈ 4 (figure 19). After the impulse the flow goes back to the
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basic stationary state, which demonstrates the convective nature of the instability.
For Re > 110, the propagating circular waves are always present in the cell, after or
before the perturbation. The still open question is whether such permanent structures
are noise-sustained or self-sustained. We recall that noise-sustained structures can
be found in a convectively unstable system when the noise existing in the set-up
is strongly amplified well above threshold (Deissler 1987). Otherwise, self-sustained
structures corresponding to a global mode can be observed for an absolutely unstable
system (Huerre and Monkewitz 1990). In our experiment, when one looks again at
figure 15, there is a strong increase of the light intensity above Re = 110, after the
first amplification at Re = 70 corresponding to the onset of the convectively unstable
regime. We think that this second sudden increase at Re = 110 cannot be interpreted
in terms of the appearance of noise-sustained structures in a still convectively unsta-
ble regime and thus may correspond to a convective/absolute transition of the flow.
However, to confirm this point, further experiments would be necessary.

6.2. Response to spin-down to rest

Experiments corresponding to the spin-down to rest of a cylindrical tank were first
described by Savas (1983, 1987). For a cell of aspect ratio Γ = 0.5, he observed
transient circular waves propagating in the Bödewadt layer when the local Reynolds
number r/δ0 ranges from 25 to 125. The dimensionless wavenumber krδ0 of the
structure evolves from 0.6 to 0.2, and the frequency ω seems to scale as 4Ω0 or 5Ω0

(figure 8 of Savas 1987). These scalings of ω and kr are thus similar to ours made under
steady conditions, suggesting that we are observing the same instability. To confirm
this point we did spin-down experiments with an aspect ratio of 20.9, starting from
the usual steady condition where only the upper disk is rotating. Typically 1 s after
stopping the disk we also observe a few bright circular waves propagating inward,
but they do not propagate as far as in the periodic forcing experiments. Note that
the motion is only observed for a few seconds in accordance to the viscous diffusion
time estimated using the cell half-thickness ((h/2)2/ν ≈ 5 s). For initial Reynolds
numbers Re ranging from 50 to 105 the wavenumber is again kδ0 = 0.5 ± 0.1, thus
similar to the one obtained under steady conditions. For Re < 50, thus for local
r/δ0 < 140, we do not observe any circles. This minimum value of 140 is much larger
than the value 25 obtained by Savas (1987) and the value 27.5 obtained numerically
by Lopez & Weidman (1996). This difference is however not surprising when one
considers the large difference in aspect ratios. The present minimum value to observe
circles Re = 50 is smaller than the critical Reynolds number determined in steady
conditions (Rec ≈ 75). However in this range 50 < Re < 75, circular waves are
generated at the periphery by the strong perturbation induced by the spin-down
condition but are damped all along their motion, suggesting that we are below the
threshold of the instability. All these results seem to indicate that the spin-down
to rest experiments lead to the same instability of the Bödewadt layer as the one
characterized quantitatively in § 5 under steady conditions.

7. Conclusion
In this paper we have investigated experimentally the primary destabilization of

the flow between a stationary and a rotating disk when the cell is closed and of
rather large aspect ratio. This destabilization occurs in the Bödewadt layer and leads
to propagative circular waves, which have been only recently discovered under steady
conditions. By controlling the mechanical noise level and frequency we have shown
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that the flow is a large-band amplifier with a most-amplified frequency of the order of
four times the rotation frequency. By visualization means we measured the thickness
of the boundary layers existing close to the disks. As usual, the thickness scales
as (Ω0/ν)

1/2 but we have found that the Bödewadt layer becomes larger at smaller
radius, following a linear evolution with r. Such an evolution of the Bödewadt layer
means that the radial flow is non-parallel there and thus a local scaling is important
to describe the dispersion relation of the instability. From our visualizations, we have
extracted the local wavenumber and the spatial growth rate of the instability. We
have shown that a unique dispersion relation does indeed exist whatever the forcing
frequency and the radial position if the data are scaled by the local thickness δBo of the
layer. Note that a local Reynolds number like the one used in infinite disk geometry
was not able to characterize the onset of the instability. The instability has thus been
found to have all the properties of a supercritical bifurcation with a threshold Rec ≈ 75
for Γ = 20.9, and a critical wavenumber kcδBo ≈ 0.5. The critical Reynolds number of
the instability is found to decrease when the aspect ratio is increased. Our control of
the noise level shows that above the critical Reynolds number, the instability is linearly
convective. For larger Re the flow seems to become absolutely unstable, thus exhibiting
self-sustained structures rather than noise-sustained structures. Finally we have made
a comparison with the circular patterns observed in spin-down experiments. The
wavenumber, frequency and threshold are not very different and thus this suggests
that the instability leading to circular waves has the general properties of a shear
instability of the radial velocity profile. The study of the most unstable wavenumber
and of the most unstable frequency was done for aspect ratio Γ = 20.9; it remains
to be done for other aspect ratios. In the same way, as this axisymmetric instability
is also observed for co-rotating disks or slightly contra-rotating disks, the existence
domain of this instability remains to be defined in the plane of the angular velocities
of the disks.
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for suggesting the use of the WKBJ approximation to deduce the dispersion relation
from the experimental measurements. Special thanks to C. Saurine and C. Frénois
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Thermiques) is associated to CNRS and to Universités Paris VI et XI (UMR 7608).
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Kármán, T. von 1921 Laminar und turbulente reibung. Z. Angew. Math. 1, 233–252.

Lingwood, R. J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech.
299, 17–33.

Lingwood, R. J. 1996 An experimental study of absolute instability of the rotating-disk boundary
layer flow. J. Fluid Mech. 314, 373–405.

Lingwood, R. J. 1997 Absolute instability of the Ekman layer and related rotating flows. J. Fluid
Mech. 331, 405–428.

Lopez, J. M. 1996 Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder.
Phys. Fluids 8, 2605–2613.

Lopez, J. M. 1998 Characteristics of endwall and sidewall boundary layers in a rotating cylinder
with a differentially rotating endwall. J. Fluid Mech. 359, 49–79.

Lopez, J. M. & Weidman, P. D. 1996 Stability of stationary endwall boundary layers during
spin-down. J. Fluid Mech. 326, 373–398.

Randriamampianina, A., Elena, L., Fontaine, J.-P. & Schiestel, R. 1997 Numerical prediction
of laminar, transitional and turbulent flows in shrouded rotor-stator systems. Phys. Fluids 9,
1696–1713.

San’kov, P. I. & Smirnov, E. M. 1984 Bifurcation and transition to turbulence in the gap between
rotating and stationary parallel disks. Fluid Dyn. 19, 695–702.

San’kov, P. I. & Smirnov, E. M. 1991 Stability of viscous flow between rotating and stationary
disks. Fluid Dyn. 26, 857–864.
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